
1

INF 111 / CSE 121:
Software Tools and Methods

Lecture Notes for Fall Quarter, 2007
Michele Rousseau
Set 5

(Some slides adapted from Susan E. Sim)

Topic 5 2

Announcements

Lab Ending Times
Add/Drop revisited
Quiz on Friday?
First Assignment

Topic 5 3

Previous Lecture
Finished Up Methods & Tools
Started the Agile Process Model

2

Topic 5 4

Today’s Lecture
Process Modeling
● Agile Process Model
● Extreme Programming

Topic 5 5

Process-Centered S/E Environment
(PSEE)

Supports the entire Development Process
Closely Tied to Process Modeling
● Petri-Nets
● State Transition Diagrams
● Etc…

Tends to support Back-End
(Imp. & Testing)
● Easier to Formalize

Topic 5 6

Petri-Net View of PSEE

Code
Ready

Review
Scheduled

From
Coding

From
Mgt

Hold
Review

Reviewed
Code

Minutes

Revised
Code

Next
Step

EndUpdate

3

Topic 5 7

The Agile Method
Agile – “having a quick resourceful
and adaptable character” – Merriam-Webster

For smaller teams and businesses
Quick Product Releases

Topic 5 8

Four Central Values of Agile
Methods
1. Focus on the human role of s/w dev

2. Continuously turn out tested working
software

3. Foster the relationship with the client
(over nitpicking the contract)

4. The Development Group

Topic 5 9

What makes a Method Agile?
Incremental
● Small software releases with rapid cycles

Cooperative
● Customers and developers working together

constantly - close communication
Straightforward
● Method is easy to learn, modify and well

documented
Adaptive
● Able to make last moment changes

4

Topic 5 10

How is Agile Different
“What is new about agile methods is
not the practices they use but their
recognition of people as the primary
drivers of project success, coupled
with an intense focus on
effectiveness and maneuverability.
This yields a new combination of
values and principles that define an
agile world view”

Highsmith anc Cockburn (2001, p 122)

Topic 5 11

Agile vs. Traditional Plan-driven

Access to
knowledgeable,
collaborative,
representative,
and empowered
customers

Dedicated,
knowledgeable,
collocated,
collaborative,
representative, &
empowered

Customers

Plan-Oriented,
adequate skills,
access to external
knowledge

Agile,
knowledgeable,
collocated, &
collaborative

Developers

Plan-driven
Methods

Agile MethodsHome-Ground
Area

Topic 5 12

Agile vs. Traditional Plan-driven

Knowable early;
largely stable

Largely emergent;
rapid change

Requirements

Designed for
current and
foreseeable
requirements

Designed for
current
requirements

Architecture

High AssuranceRapid ValuePrimary
Objective

Larger Teams and
Products

Smaller teams
and Products

Size
ExpensiveInexpensiveRefactoring

Plan-driven
Methods

Agile MethodsHome-Ground
Area

5

Topic 5 13

Examples of Agile Methods

XP Extreme Programming
Scrum
● ”Getting out-of play ball back into the

game”
FDD Feature Driven Development
RUP Rational Unified Process

Topic 5 14

Extreme Programming (XP)
Invented by Kent Beck in 1996
● “Seat of the pants” fix to Chrysler project
● To fix problems caused by long development cycles of

traditional process models
Beck Published in 1999
“Extreme Programming Explained: Embrace Change”
● Current hot topic in S/W Process
● Loved and Hated
● Tries to associate s/w process with eXtreme sports

Idea: Take a good programming practice and
push it to the extreme
● Eg. Testing
● Testing is good so… do it all the time

Topic 5 15

Premise of XP

The Four Values

Communication Simplicity Feedback

Courage

Hmmm.. But aren’t these standard “Best Practices”?
What’s new here?

6

Topic 5 16

5 Phases Of Development

Exploration
Planning
Iterations to Release
Productionizing
Maintenance
Death

Topic 5 17

Exploration Phase
Customers
● Story Cards – 1 feature per card

◘ Customer wish list for first release

Developers
● Get familiar with

◘ Tools
◘ Technology
◘ Practices
… to be used

● Architecture possibilities explored – Prototype
● Tailor process to the project

A few weeks to months
● How familiar is tech to programmers

Topic 5 18

Planning Phase

Prioritize Stories
● First Small release agreement

Effort Estimate for each story
● Schedule Agreement

◘Usually < 2 months

Takes a few days

7

Topic 5 19

Iterations to Release Phase
Several Iterations before 1st Release
of Iterations determined in planning
phase
Each iteration takes 1-4 wks to implement
Select stories wisely
● these enforce system architecture for the entire

system
● Customer chooses stories for each iteration

Functional tests created by Customer
● Run at the end of each iteration

At the end of last iteration Production

Topic 5 20

Productionizing Phase

End testing before release
New changes may be found
●Decide whether to include in current

release
●Documented for later implementation

Maintenance Phase

Iterations shortened

Topic 5 21

Maintenance and Death Phases
Maintenance
● May need more people

◘ Maintain current production
◘ Produce new Iterations
◘ Change team structure

● Development slows

Death Phase
Either…
● All stories complete & quality is satisfactory
● Not delivering expected outcomes
● Too expensive to continue

8

Topic 5 22

XP Lifecycle Model

Topic 5 23

14 Key Practices of XP

On-site customer
Metaphor

Customer Practices

Planning Game
Small releases
40-hour week
Open Workspace

Management
Practices

Simple Design
Test-driven development
Refactoring
Pair programming
Continuous integration
Collective code ownership
Coding standards
Just Rules

Programmer
Practices

Topic 5 24

Programmer Practices
Simple Design
● Simple solutions no complex or extra code
● Do the simplest thing that will get you thru milestone
● Eliminate duplication in the design
● Don't over engineer, solve problems only when they

occur

Test-driven development
● Unit test implemented before code and are run

continuously (White Box Testing)
◘ Write a simple, automated test before coding

● Customers write functional tests (Black box testing)

Communication Simplicity Feedback

Courage

9

Topic 5 25

Programmer Practices (2)
Refactoring
● Improving code without changing features

A change to the system that leaves its behavior
unchanged, but enhances some nonfunctional
quality-simplicity, flexibility, understandability,
performance.

● Automated tests catch any errors that are introduced
Pair Programming 2 people + 1 computer
● One codes, one thinks about the design and catches

errors
Continuous Integration
● Many times / day
● All tests must pass for changes to be accepted
Communication Simplicity Feedback

Courage

Topic 5 26

Programmer Practices (3)
Collective Ownership
● Any developer can change any code any time
● But, “you break it, you fix it”

Coding Standards
● Everyone codes to the same style standards
● Corollary to “collective code ownership”
● “No one can recognize who wrote what”

Just Rules
● Team defined – can change

◘ all must agree & impact assessed
Communication Simplicity Feedback

Courage

Topic 5 27

Pair Programming
Programming is not just “typing”, this is why pair

programming does not reduce productivity (Fowler)

Benefits:
● All design decisions involve at least two brains.
● At least two people are familiar with every part

of the system.
● There is less chance of both people neglecting

tests or other tasks.
●Changing pairs spreads knowledge throughout

the team.
●Code is always being reviewed by at least one

person.

10

Topic 5 28

Management Practices

Planning Game
● Dev estimates effort
● Cust decides what they want and when

Small Short Releases < 2-3 months
● Then less

40-hour work week
● No 2 overtime wks in a row

Open Workspace
● 1 Large Room Small Cubicles
● Pair Programmers in the Center

Communication Simplicity Feedback

Courage

Topic 5 29

Customer Practices
On-site customer
●Need customer/user around to answer

questions
● Builds a bond, working relationship

Metaphors
● “Shared Story” guides development
●Describes how system should work

Communication Simplicity Feedback

Courage

Topic 5 30

User Story / User Card

http://www.scissor.com/resources/teamroom/

11

Topic 5 31

The XP Team Room

Topic 5 32

XP Concepts

XP is a set of key practices that suggest a
software development process.
Key concept: Embrace change.
● Rather than avoid changes, try to reduce the cost

of making changes.
Key concept: Defer costs.
● Rather than face every problem up front, try to

start with a small subset and incrementally plan
and carry out improvements.

Topic 5 33

XP Proponents Responses to Criticisms
Just a fancy form of build-and-fix.
● False.
● XP is actually a disciplined software process.
● Has the some of the same challenges and adoption

problems as traditional phased processes.

Doesn’t work for large systems.
● False.
● Chrysler Comprehensive Compensation system was a

large system
● Other XP users include Google and John Deere

Doesn’t work for large teams.
● False.
● Large teams are normally broken up into sub-projects
● Same can be applied to large teams using XP

12

Topic 5 34

Doesn’t work for geographically distributed teams.
● False.
● Technology is both the cause and the solution
● Planning tools, Skype, IM, revision control

User stories are no substitute for requirements.
● True.
● User stories work, because they depend on the other practices

such as On-site Customer

Doesn’t work with safety-critical software.
● False.
● Same challenges apply here as with phased processes
● Can add checks and balances, documentation, and formal

design as needed

XP Proponents Resp. to Criticisms (2)

Topic 5 35

Doesn’t produce documentation.
● Maybe. XP only produces as much documentation as is

needed, when it is needed (simplicity).

It is wasteful, because you’re doing constantly
doing re-design.
● False.
● Planning everything up front is wasteful, because things are

going to change anyways.

Not suitable for all projects
● True.
● User functionality is simple, algorithms hard
● Example: scientific applications

XP Proponents Resp. to Criticisms (3)

Topic 5 36

Productivity Gains

For a Web Dev Project
● 66% increase in new lines of code

produced
● 302% inc in new methods developed
● 283% inc in # of new classes implemented

Maruer & Martel 2002b

13

Topic 5 37

Cons

Corp Culture must support XP
● Any resistance can lead to failure

Best for teams < 20
Best if teams are collocated
●On the same floor

Technology that does not support
“graceful change” may not be
suitable

Topic 5 38

More Reading if you are interested
Agile
● Abrahamsson, P, et al. (2002). Agile

software development methods: Review
and analysis. VTT Publications 478.

● http://www.vtt.fi/inf/pdf/publications/2002/P
478.pdf

XP
● Beck, K. (1999). Extreme programming

explained: Embrace change. Reading
Mass., Addison-Wesley

